. 24/7 Space News .




CLIMATE SCIENCE
Chatham Rise Geochemistry Survey Reveals Modern C02 Emissions
by Staff Writers
Washington DC (SPX) Jun 02, 2013


Image displays seismic reflection data showing sediment injection lenses beneath a giant pockmark feature on the southern flank of the Chatham Rise. (Courtesy Research Expedition SO226-2, 2013). For a larger version of this image please go here.

Geochemistry analysis conducted by the U.S. Naval Research Laboratory of fossil sediment injection structures off the New Zealand coast in February and March reveal no presence of modern day expulsions of methane gas, a potential contributor to global 'greenhouse effect' warming.

The main focus of this most recent expedition was to investigate the geological origin of seafloor anomalies discovered during a 2007 marine-life survey on the Chatham Rise.

During the 2007 survey scientists discovered several large seafloor craters, or pockmarks, including a giant 11 kilometers by 6 kilometers pockmark in water depths of about 1,000 meters, considered immense compared with pockmarks observed elsewhere in the world.

Scientists from Germany, New Zealand, and United States used the two-leg voyage aboard the German research vessel, R/V Sonne, to map and investigate giant seabed features and subsurface structures characteristic of large scale gas-rich fluid migration about 500 kilometers east of Christchurch, South Island, New Zealand.

While the gas and related sediment chemistry results demonstrate this system is no longer geochemically active, these very large pockmarks - 11 kilometers by 6 kilometers in diameter and 100 meters deep - are part of a much larger field of many thousands of smaller pockmarks that extends eastward along the Chatham Rise.

Covering approximately 20,000 kilometers of seafloor, these pockmarks suggest sporadic gas escape may be occurring, possibly only during glacial intervals that occur approximately every 20,000 years.

"Geochemical analyses of the seafloor craters taken during the second leg of the voyage displayed no indication of a vertical methane flux through the sediment as indicated by the first part of the voyage," said Richard Coffin, chief scientist, NRL Chemistry Division.

"This result suggests that gas-charged fluid escape leading to the pockmark formation may have occurred in the past, but seafloor gas seeps are not currently active."

The first leg of the survey was to map the seabed and undertake a high-resolution three-dimensional (3D) seismic survey over some of the pockmarks to image the sub-seafloor.

During the second leg of the expedition, Coffin led geochemical investigations at four distinct Chatham Rise locations based on data from the seismic surveys. Piston and multi coring was conducted for geochemical evaluation of sediment and pore water to assess current and past day vertical fluid and gas fluxes.

"The apparent absence of methane in the shallow sediment and water column at the giant pockmark area was a surprise given the first leg results," Coffin said. "Onboard analysis showed no current day flux of deep sediment thermogenic or biogenic methane to the shallow sediment."

Scientists believe the latest results indicate the pockmarks are formed by gas escape that has come from rocks buried deep beneath the rise. Methane may have escaped during vigorous ancient degassing from under the seafloor into the ocean with significant implications for climate change and ocean acidification.

Ongoing seismic interpretation and pore water chemistry studies, to be undertaken by the international team of investigators, is expected to clarify the history of the enigmatic giant pockmarks and underlying sedimentary structures.

.


Related Links
Naval Research Laboratory
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CLIMATE SCIENCE
Scientists narrow global warming range
Melbourne, Australia (SPX) May 29, 2013
Australian scientists have narrowed the predicted range of global warming through groundbreaking new research. Scientists from the University of Melbourne and Victoria University have generated what they say are more reliable projections of global warming estimates at 2100. The paper, led by Dr Roger Bodman from Victoria University with Professors David Karoly and Peter Rayner from the Uni ... read more


CLIMATE SCIENCE
NASA's GRAIL Mission Solves Mystery of Moon's Surface Gravity

Moon dust samples missing for 40 years found in Calif. warehouse

Unusual minerals in moon craters may have been delivered from space

Moon being pushed away from Earth faster than ever

CLIMATE SCIENCE
Leicester Scientist Helps Discover Ancient Streambed On Mars

10 years on, Europe salutes its Martian scout

War Of The Worlds: Looking Back on the Martian Apocalypse

Rounded Stones on Mars Evidence of Flowing Water

CLIMATE SCIENCE
A certain level of stress is necessary

Northrop Grumman-Built Modular Space Vehicle Nears Completion of Manufacturing Phase

French government posts space counsellor in Bangalore

3D Printing: Food in Space

CLIMATE SCIENCE
Shenzhou-10 spacecraft to be launched in mid-June

Sizing Up Shenzhou 10

Rollout for Shenzhou 10

Soft Pedal for Shenzhou 10

CLIMATE SCIENCE
International trio takes shortcut to space station

Science and Maintenance for Station Crew, New Crew Members Prep for Launch

ESA Euronews: Living in space

Next destination: space

CLIMATE SCIENCE
Rocket Engine Maker Proton-PM to Invest in New Products

Russia Launches European Telecoms Satellite

Ariane poised to launch first 20 ton payload into orbit

SES-6 Proton Breeze M Scheduled For Launch Monday

CLIMATE SCIENCE
Big Weather on Hot Jupiters

Critical Kepler Reaction Wheel Fails: Mission End In Sight

Sifting Through the Atmosphere's of Far-Off Worlds

New Method of Finding Planets Scores its First Discovery

CLIMATE SCIENCE
Radiation Exposure Associated with a Trip to Mars Calculated

After factory shutdown, Italian workers 'recycle' jobs

Radiation Measured by Curiosity During Mars Trip Has Implications for Human Missions

NASA, Researchers Use Weightlessness of Space to Design Better Materials for Earth




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement